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Numerical Simulation
of Focused Shock Shear
Waves in Soft Solids and a
Two-Dimensional Nonlinear
Homogeneous Model of
the Brain
Shear waves that propagate in soft solids, such as the brain, are strongly nonlinear and
can develop into shock waves in less than one wavelength. We hypothesize that these
shear shock waves could be responsible for certain types of traumatic brain injuries
(TBI) and that the spherical geometry of the skull bone could focus shear waves deep in
the brain, generating diffuse axonal injuries. Theoretical models and numerical methods
that describe nonlinear polarized shear waves in soft solids such as the brain are pre-
sented. They include the cubic nonlinearities that are characteristic of soft solids and the
specific types of nonclassical attenuation and dispersion observed in soft tissues and the
brain. The numerical methods are validated with analytical solutions, where possible,
and with self-similar scaling laws where no known solutions exist. Initial conditions
based on a human head X-ray microtomography (CT) were used to simulate focused
shear shock waves in the brain. Three regimes are investigated with shock wave forma-
tion distances of 2:54 m; 0:018 m, and 0:0064 m. We demonstrate that under realistic
loading scenarios, with nonlinear properties consistent with measurements in the brain,
and when the shock wave propagation distance and focal distance coincide, nonlinear
propagation can easily overcome attenuation to generate shear shocks deep inside the
brain. Due to these effects, the accelerations in the focal are larger by a factor of 15 com-
pared to acceleration at the skull surface. These results suggest that shock wave focusing
could be responsible for diffuse axonal injuries. [DOI: 10.1115/1.4032643]

1 Introduction

Shear waves in soft solids have nonlinear properties that are 4
orders of magnitude larger than in classical solids [1]. Conse-
quently, shear waves can transition from a smooth to a shocked
profile in less than one wavelength [2]. This extremely nonlinear
behavior is largely due to the slow shear wave speed in soft solids,
which is approximately 2 m=s [3] compared to 1540 m=s [4] for a
compressional wave.

We hypothesize that these shear shock waves could be respon-
sible for certain types of TBI and that the spherical geometry of
the skull bone could focus shear waves, generating shocks. The
sharp gradients occurring at shear shock wave front could stretch
and damage neurons generating some lesions. This mechanism
could be responsible for diffuse axonal injuries which occur deep
in the brain, far from the impact surface, and appear as focal
lesions.

Compared to acoustic shocks, which have been well studied in
the context of TBI, very little is known about shear waves because
until recently they were difficult to measure at depth in solids.
Shear shock waves were observed for the first time in tissue-
mimicking soft solids [1] in 2003, when the technology to obtain
high frame-rate ultrasound imaging was developed [5]. Following
this observation, a model for incompressible media was developed
[6,7] leading to equations that describe nonlinear propagation of

plane shear waves for different polarizations in soft solids [8].
The approximation of incompressible media was investigated by
Wochner et al. in 2008 [9]. The same authors extended the
plane wave model by including diffraction in the paraxial approxi-
mation. For a transverse polarization, the model reduces to an
equation similar to the well-known Khokhlov–Zabolotskaya–
Kuznetsov [10] in acoustics but with a cubic nonlinear term
instead of a quadratic one. This leads to the nonlinear generation
of odd harmonics (f0, 3f0; 5f0,.) [11] and shock waves, which can
be used to measure the nonlinear elastic parameters [12,13]. Non-
linear Mach reflection of shear shock waves has also been studied
theoretically and numerically [14]. Hence, there are strong simi-
larities between shear shock waves and classical pressure shock
waves.

Magnetic resonance elastography (MRE) has been used to
investigate linear shear wave propagation in the brain [15,16]. By
assuming a single frequency or narrowband input, the shear wave
can be sampled with sub-Nyquist techniques at frame rates below
the excitation frequency. Restricting the frequency content to a
narrowband range that is known a priori allows the aliased signal
to be unwrapped to the correct frequency. Then, by assuming lin-
ear propagation, the Helmholtz inversion method can be used to
determine the linear elastic properties of the brain [15]. MRE has
been successful at probing the linear mechanics of the brain, espe-
cially in in vivo studies. However, two principal limitations render
it unsuitable for investigation of the nonlinear shear waves pro-
posed here. First, shock waves are inherently broadband, so that
sub-Nyquist sampling techniques cannot be used. Second,
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inversion of linear wave models cannot be used since the propaga-
tion is nonlinear. MRE tagging has pushed the achievable imaging
frame rates up to a nominal maximum of 100 images/s [17]. The
shock waves described here have harmonics that extend beyond
1100 Hz, which places them beyond the current sampling rates
achievable with MRE.

Ultrasound scanners can generate imaging frame rates in excess
of 10,000 images/s [1,5]. Algorithms that are tuned to measure
motion from the raw radio frequency signals have a precision that
can be better than 1 lm [18,19]. Adaptive correlation based
motion tracking has been used to generate quantitative movies of
planar shear shock waves at this high precision and high frame-
rates [20].

However, the focusing of shear shock waves has never been
investigated to the best of our knowledge, while an extensive liter-
ature is devoted to compression shock focusing in the context of
focused beams used in medical applications [21,22] or of sonic
booms [23,24]. Due to wave speed differences, the time scales
associated with shear shock waves are much longer than acousti-
cal shocks. The objective of the present study is to numerically
investigate the focusing of shock shear waves.

Numerical methods used for the biomechanical models of the
head are dominated by finite elements (FE) because they can
accurately and easily model detailed anatomical structure of the
skull and brain in conjunction with complex mechanical models
[25]. With respect to shear deformations, the first FE models
assumed linear elasticity [26,27]. More recent models used linear
viscoelasticity combined with large deformation [28–30]. Nonlin-
ear neo-Hookean constitutive laws have been introduced for the
deviatoric part [31,32] with no other parameter than the linear
Young modulus. Mendis [33] used a hyperelastic Mooney–Rivlin
with two linear parameters, while Brands et al. [34] extended this
model with two additional nonlinear parameters. In the present
study, we consider exclusively the shear component of elastic
deformation and we use the fully nonlinear incompressible elastic
model of Hamilton et al. [6], in which nonlinear effects
combine into a single measurable nonlinear parameter [13].
Unlike FE simulations, here the propagation medium is assumed
to be homogeneous. Furthermore, the simulations presented here
are in two dimensions and a perfect transfer from head motion to
brain tissue is assumed. However, this is the first simulation of
two-dimensional shear shock wave propagation in the brain.

The first part of this paper presents the theoretical model and
numerical methods that describe nonlinear polarized shear waves
in soft solids, such as the brain. This model and numerical
solution include the cubic nonlinearities that are characteristic of
soft solids and the specific types of nonclassical attenuation and
dispersion observed in soft tissues. In this case, shear shock waves
can be modeled by a parabolic equation with cubic nonlinearities.
Attenuation in soft tissues is described by a semi-empirical law in
the frequency domain. The model is solved numerically with a
quasi-second order scheme based on a Strang splitting method.
Diffraction is solved with a Crank–Nicolson finite different
scheme and nonlinearities by a modified MacDonald–Ambrosiano
shock capturing scheme. In the second part, several numerical
tests are used to validate this scheme. In particular, Guiraud’s
self-similarity law was used as a demanding numerical test for
two-dimensional shock waves. This provides the strongest avail-
able numerical validation since there are no known analytical
solutions of the full equations. The third part presents an idealized
case of nonlinear shear wave focusing with initial conditions that
are characteristic of TBIs. This allows us to numerically test the
hypothesis that some TBIs could be caused by focusing the shear
waves to generate shocks. In particular, an X-ray CT of a human
skull is used as an initial condition surface that sends shear waves
into the brain.

A two-dimensional head configuration for blunt impacts was
then investigated. Skull geometry was retrieved from CT images.
Mechanical brain properties were found in literature, except the
nonlinear parameter which is unknown. Simulations were

therefore performed with a value obtained from tissue-mimicking
phantom gels.

We demonstrate that under realistic loading scenarios and
when the shock wave propagation distance and focal distance
coincide, nonlinear propagation can easily overcome attenuation
to generate shear shocks deep inside the brain. These results sug-
gest that shock wave focusing could be responsible for diffuse
axonal injuries.

2 Theoretical and Numerical Model

Soft solids such as the white or gray brain matter or gelatin-
based phantoms can be considered, to the first order, as incom-
pressible since there is a 3 order of magnitude difference between
the shear cT and compression cL wave propagation speeds. This
corresponds, respectively, to shear moduli on the order of a few
kilopascals and to bulk moduli on the order of a few gigapascals,
i.e., a difference of 6 orders of magnitude. By assuming a per-
fectly incompressible behavior, the energy density, E, based on
Landau and Lifshitz’ choice of invariants [6,35], can be written as

E ¼ lI2 þ
A

3
I3 þ DI2

2 (1)

Here, I2 ¼ trðS2Þ; I3 ¼ trðS3Þ, and S is the fully nonlinear strain
tensor related to the displacement field u by
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The shear modulus is l ¼ qc2
T , q is the medium density, and A

and D are, respectively, the third- and fourth-order elastic
constants.

In the case of a perfect linear polarization u3ðx1; x2; tÞ, the
elastodynamic equations reduce to a nonlinear scalar wave equa-
tion [14]
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with a sum on the index m¼ 1 and 2. This equation can be further
simplified by using the paraxial approximation [9]. Then, the
wave propagates mainly in the X¼ x1 direction and it is assumed
to be quasi-planar, i.e., it varies smoothly in the transverse direc-
tion Y¼ x2 which simplifies the nonlinearity and diffraction

@2V

@X@T
¼ cT

2

@2V

@Y2
þ b

3c3
T

@2V3

@T2
þ a Tð ÞV (4)

Here, V ¼ @u3=@t is the particle velocity in the direction Z¼ x3.
The variable T ¼ t� X=cT is the retarded time. A full derivation
of the first three terms in this equation can be found in Ref. [9].
The first two terms of Eq. (4) describe linear propagation and dif-
fraction of a shear wave beam. The third term describes the non-
linear evolution of the wave with propagation. The parameter b,
which determines the magnitude of cubic nonlinearity, is related
to the elastic constants defined in Eq. (1) by [8]

b ¼ 3

2
1þ

A

2
þ D

l

0
@

1
A

(5)

Note that generally the nonlinear parameter b is directly measured
based on nonlinear acoustical effects (such as the generation of
third and even order harmonics [13]). Generally, l, A, and D
would be required to describe the nonlinear parameters of a shear
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wave; however, for a plane polarized wave, the single parameter b
can be used. The third-order elastic constant A can be determined
by acoustoelasticity [12], thus giving a measurement of the
fourth-order constant D. Compared to the original derivation of
Ref. [9], Eq. (4) has an additional term aðsÞV. It describes an em-
pirical generalized linear dispersion and absorption operator
which is introduced to take into account realistic absorption laws
observed in soft media [36]. Unlike classical thermoviscous pre-
dictions, which have a quadratic power law dependence, the
absorption coefficient observed in the human body has absorption
coefficient with a nonquadratic power law that varies between
powers of 1 and 2 for both shear waves [3,13] and compression
waves [36,37].

Equation (4) has a similar form to the Khokhlov–
Zabolotskaya–Kuznetsov (KZK) equation which has been exten-
sively studied in acoustics [10]. The principal differences between
the compressive waves described by the KZK equation and the
shear waves described by Eq. (4) are that the nonlinearity is cubic
instead of quadratic, and the attenuation is described empirically.
Nevertheless, the numerical methods that have been previously
developed for the nonlinear acoustic case can be modified to solve
the nonlinear shear case.

To aid in the definition of the numerical methods, Eq. (4) can
be rewritten by integrating both sides with respect to retarded
time [38] and by introducing dimensionless variables that are
defined based on cusp caustics [39]. This rescaling is designed for
focal geometries

@v

@x
¼
ð
@2v

@y2
dsþ c

@v3

@s
þ Abs sð Þv (6)

where
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These new variables are rescaled by the source properties. Lx

and Ly are the diffraction length scales, respectively, along and
transverse to the x axis. The variable a is a geometrical parameter
that characterizes the focal geometry; V0 is the initial velocity
amplitude; M is the shear wave Mach number; and k0 and x0 are,
respectively, the characteristic wave number and angular fre-
quency of the emitted signal.

The numerical method that solves Eq. (6) is based on an opera-
tor splitting technique, which solves each of the terms on the
right-hand side separately. Over a small propagation distance
defined by the grid size, Dx, the diffraction, nonlinearity, and
absorption operators are solved independently. Here, we use a
second-order Strang splitting scheme [40], so that, in conjunction
with second-order methods for each of the individual operators,
the overall precision of the scheme is preserved at order 2 [41].
This splitting scheme can be written as

vðxþ DxÞ ¼ LD;Dx=2 � LA;Dx=2 � LN;Dx � LA;Dx=2 � LD;Dx=2ðvðxÞÞ
(13)

where LO;Dx denotes the solution of any subequation @v=@x
¼ OðvÞ over the propagation distance, Dx. The operators are thus

split into diffraction, LD;Dx ¼
Ð
@2v=@y2ds, nonlinearity, LN;Dx

¼ c@v3=@s, and absorption, LA;Dx ¼ AbsðsÞv. The symbol �
denotes the successive ordering of the operations from right to left
in the right-hand side of Eq. (13). Note that the half steps over a
propagation distance of Dx=2 are required for the second-order
splitting scheme. The diffraction operator, at the beginning and
end of the expression, is written as two half steps. Numerically,
however, the half diffraction step is immediately repeated in the
subsequent iteration. Therefore, the two diffraction substeps can
be merged into a single one over Dx. Consequently, only the
absorption substep is performed twice over a half step Dx=2. In
fact, the choice of the operator ordering in Eq. (13) has been done
purposely, since the absorption step has the smallest numerical
cost.

The numerical solution of the diffraction step is performed
with a time domain finite-difference scheme similar to the one
developed for the KZK equation [38]. It consists of a combination
of a second-order trapezoidal method to solve the integral
and an unconditionally stable semi-implicit second-order Crank–
Nicholson scheme. The absorption step is performed in the fre-
quency domain with a fast-Fourier transform v̂ðxÞ of the velocity
signal vðsÞ and by applying the absorption law assumed to be
known theoretically or experimentally in the frequency domain

LA;Dxðvðx; y; sÞÞ ¼ FFT�1½v̂ðx; y;xÞe�aðxÞDx� (14)

Here, aðxÞ is the complex linear dispersion/absorption coefficient
at angular frequency x. The numerical advantage of solving this
law in the frequency domain is that the exact values of attenuation
and dispersion can be defined at each discrete frequency value.
The mixing of time domain and frequency domain numerical
methods has been used extensively in nonlinear acoustics [36,42].

The nonlinear operator appears as a conservation law similar to
the inviscid Burgers’ equation [2], but in which nonlinearity is
cubic instead of quadratic

@v

@x
¼ c

@v3

@s
(15)

As is the case for Burgers’ equation, the main numerical chal-
lenges associated with the cubic equation are related to the
description of the shock front. An exact implicit Poisson’s solu-
tion could be used to solve this equation in a way similar to the
method implemented by Lee and Hamilton [38] and Yang and
Cleveland [43], but the step size requirements are stringent,
requiring a grid sampling that is significantly finer than the shock
thickness. Even with fine sampling, these implicit numerical
methods do not conserve the Rankine–Hugoniot conditions and
the correct shock wave speed. Furthermore, the handling of shock
waves is more complex compared to the quadratic case since the
cubic case allows expansion shocks [44]. Therefore, a shock cap-
turing method is used here.

In particular, we use a scheme that is based on a hybrid method
proposed by McDonald and Ambrosiano [45], which combines a
dissipative first-order scheme very near shock waves, and a dis-
persive second-order scheme away from them. A flux limiter
restricts the first-order method to a very narrow zone around the
shock, so that the overall scheme globally retains its second-order
properties at the cost of the small numerical dissipation required
to numerically stabilize the shocks. The original flux limiter [46]
in the McDonald Ambrosiano scheme tends to flatten the signal
around the position where the flux switches from first to second
order. To avoid this type of error, we replaced it with a “minmod”
flux limiter [47].
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The inviscid cubic Burgers’ equation is discretized by letting
Vn

j represent velocity field at the discrete time sj ¼ jDs and the
discrete position xn ¼ nDx

Vnþ1
j;k ¼ Vn

j;k �
Dx

Ds
Hn

j;k � Hn
j�1;k

� �
(16)

where Hn
j is a numerical approximation of the function v3.

Compared to the conventional quadratic Burgers’ equation, the
numerical scheme is always upwind because the shock velocity
w ¼ �cv2 has a constant negative sign. The first-order approxima-
tion of Hn

j , denoted by Fn
j , is given by

Fn
j ¼ �cðVn

jþ1Þ
3

(17)

Similarly, the second-order approximation of the flux, denoted
as Gn

j , is
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� �2 Vn
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h i�

(18)

The hybrid scheme combines the first- and second-order
approximations

Hn
j ¼ Fn

j þ /ðhn
j ÞðGn

j � Fn
j Þ (19)

The minmod flux limiter / has values between 0 (for the first-
order scheme near shocks) and 1 (for the second-order scheme for
smooth regions)

/ðhÞ ¼ maxð0;minð1; hÞÞ (20)

where

hj ¼
Vj � Vj�1

Vjþ1 � Vj
(21)

Unlike the diffraction scheme, the nonlinear step is explicit and
therefore has to satisfy a Courant–Friedrichs–Lewy stability con-
dition given by [45]

				3cv2
max

Dx

Ds

				 � 1 (22)

where vmax is the maximum particle velocity. The stability condi-
tion depends on the local velocity amplitude. As a consequence,
the step size becomes more restrictive in cases where there is
strong focusing. Note that the definitions of the boundary condi-
tions vary according to the individual cases being investigated and
are defined in Secs. 3.2 and 4.1.

3 Validation

3.1 One-Dimensional Nonlinear Case. The shock capturing
performance of the proposed numerical scheme is tested in one
dimension by solving the inviscid case (Eq. (15)) with a pure sine
wave as an input condition vðx ¼ 0; sÞ ¼ v0ðsÞ ¼ sinðsÞ. The
space variable x ¼ X=Ls is scaled by the shock formation distance
Ls ¼ c3

T=bx0v2
0, which is equivalent to setting: c ¼ 1=3. Two flux

limiters are compared: the Boris and Book limiter [46] and the
proposed minmod limiter [47]. The results at x ¼ 30Ls are shown
in Fig. 1 and compared to the analytical but multivalued Poisson’s
solution

vðx; sÞ ¼ v0ðhÞ with s ¼ h� xv2
0ðhÞ (23)

The overall behavior of the two algorithms is generally similar
and leads to the expected nonlinear distortion of the waveform,
with a periodic succession of “positive” (vþ > v�) and “negative”
(vþ < v�) shocks, where vþ (respectively, v�) is the velocity
immediately after (respectively, before) the shock. This behavior
is typical for cubic nonlinearities, unlike to the quadratic compres-
sion case where only compression shocks are thermodynamically
admissible. Note, however, the Boris and Book limiter leads to
the formation of a numerical artifact which can be observed in
Fig. 1(a) as a local flattening of the waveform before each shock.
This artifact does not occur when using the minmod flux which
tends to smooth the solution just before the shock as is visible on
the comparison with Poisson’s solution. Figure 1(b) displays in
the same case the total energy of the signal for the minmod flux
limiter. One can clearly see that energy is conserved up to the
shock formation distance x¼ 1 (see especially zoom between
x¼ 0 and x¼ 1.5) and then decays because of energy loss at the
shock front. The same figure shows the energy in a case with
absorption. The absorption coefficient aðxÞ is chosen to be linear
with frequency to simulate observations for gel phantoms. The
corresponding Gol’dberg number at the input frequency is chosen
to be equal to 60, which corresponds to the case that will be fur-
ther investigated (see Sec. 4). The figure shows that, compared to
the inviscid case, the absorption leads to energy losses before
the shock formation. Beyond the shock formation, because the
Gol’dberg number is relatively high, the energy losses are

Fig. 1 Left: Solutions of Eq. (15) calculated over one period at position x 5 30, for an initial
sinusoidal plane wave with an angular frequency x0. Dotted line: implicit analytical Poisson’s
solution. Dark-dashed line: numerical solution with minmod limiter. Light-dashed line: numeri-
cal solution with Boris and Book limiter. Right: energy as function of distance for x ‰ ½0 ; 30�
without dissipation (dotted line) and with dissipation for a Gol’dberg number equal to 60
(dashed line). Inset figure: zoom for x ‰ ½0 ;1:5�.
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dominated by nonlinearities through shocks as in the inviscid
case. However, absorption always leads to additional dissipation.
The comparison between the inviscid and absorbing cases also
shows that physical absorption is properly taken into account and
is not dominated by the numerical dissipation which is indeed
very small (less than 0:02% at the shock formation distance
x¼ 1).

3.2 Two-Dimensional Linear Case. This subsection is
devoted to the validation of numerical solutions of the 2D linear
diffraction equation

@v

@x
¼
ðs

�1

@2v

@y2
ds (24)

An analytical solution of this equation exists for the case of a
caustic cusp [39] which is of particular interest here because: (1)
it corresponds to a focused case such the ones we want to investi-
gate; (2) the analytical solution is expressed in the time domain
for a transient signal and not only in the frequency domain so it is
well adapted to time domain solvers; and (3) for a shock wave,
the analytical solution is singular (due to the ðs� 1Þ�1=6

term)
and therefore especially difficult to capture numerically. Indeed,
for a focused shock, either nonlinearities or absorption is neces-
sary for a finite solution.

An N-wave is used as an input waveform

FðsÞ ¼
�s jsj � 1

0 jsj > 1

(
(25)

The following input time signal is imposed on the boundaries of
the numerical domain surrounding the caustic cusp on a domain
that is sufficiently large to support the caustic (as shown in Fig. 2)

v x; y; sð Þ ¼
F sþ a x; yð Þyþ a2 x; yð Þx� a4 x; yð Þ

 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j6a2 x; yð Þ � xj

q (26)

Here, aðx; yÞ is the single real root of the polynomial 4a3

�2ax� y ¼ 0. This specific boundary condition is the
exact boundary condition of a perfect cusp caustic of equation
y2 ¼ 8x3=27 with a geometrical focus at the origin [39]. Note that
in catastrophe theory [48], cusp caustics are second simplest after
fold caustics. They are produced by an arbitrary curved wavefront
that contains a local minimum in the radius of curvature. In this
case, the geometrical parameter a introduced in Eqs. (8) and (9) is

defined as a ¼ 9R0ð0Þ2R000ð0Þ=8 with R0ðYÞ, which is the radius of
curvature of the wavefront as a function of the transverse position
Y with a minimum at Y¼ 0, and R000 is its second-order derivative.
In the frequency domain, solution of Eq. (24) with boundary con-
dition Eq. (26) with FðsÞ ¼ sinðsÞ is given by well-established
Pearcey function [49].

The numerical solution was compared to this analytical solution
on the nondimensional domain s 2 ½�3 4�; x 2 ½�1 1�, and
y 2 ½�3:6 3:6� with Dx ¼ 0:001 and Dy ¼ 0:001 (Nx¼ 2001 and
Ny¼ 7201). The sampling of the time domain is performed with
three values Ds ¼ 10�3; Ds ¼ 5:10�3, and Ds ¼ 10�4, so, respec-
tively, Ns ¼ 7001; Ns ¼ 14 001, and Ns ¼ 70 001. The right plot
in Fig. 2 shows the maximum particle velocity at each spatial grid
point. Due to focusing effects, the incoming N-wave is amplified
by over a factor of 10. The two characteristic branches of the
caustic cusp are visible, as well as a complex interference pattern
near the cusp. As expected, the position of the maximum of the
amplitude is shifted slightly away from the geometrical focus
(located at 0 on the y axis) because of diffraction effects. This
shift varies with frequency as a function of x�1=2

0 as given by
Eq. (8). It is only at the high-frequency limit that the position of
the focus corresponds to the geometrical focus x ¼ y ¼ 0. These
results qualitatively demonstrate that the numerical scheme suc-
cessfully describes these challenging caustic cusps.

A quantitative validation is shown in Fig. 3(a), which compares
the computed waveform to the analytical solution [39] at the
geometrical cusp. The numerical solution closely follows the ana-
lytical result, including the overall signal shape and the two sharp
peaks that occur as a result of focusing of the two shocks in the
input N-wave. However, the analytical solution is singular at these
two peaks since the shocks have an infinite frequency content.
These singularities cannot be reproduced numerically, and the
error is examined in more detail by zooming in on the first shock,
which is shown in Fig. 3(b). As expected, better agreement with
the analytical singular solution is obtained by refining the time
discretization. The numerical dissipation spreads out the shock
slightly and it bounds the peak amplitudes to a finite value. The
small oscillations following the focused shock are due to the
second-order trapezoidal integration that introduces a small
amount of numerical dispersion in the diffraction part of the
algorithm.

Figure 3(c) compares the second- and first-order numerical
solutions of Eq. (24). The first-order solution is computed with a
rectangular discretization instead of a trapezoidal one. From this
plot, it is clearly visible that the second-order scheme introduces
much less numerical dissipation and better captures the sharp vari-
ation around the shock. On the other hand, it induces a small
amount of numerical dispersion that leads to oscillations behind
the shock (barely visible in plot).

Fig. 2 Left: Schematic diagram of the domain of calculation used for the caustic cusp geome-
try. O is the geometrical caustic point, at the origin. Right: maximum particle velocity
determined by the numerical solution for a focused N-wave for the case Ns 5 70,001. The geo-
metrical caustic cusp is shown as a line. The solution is zoomed around the caustic cusp.
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3.3 Two-Dimensional Nonlinear Validation: Guiraud’s
Self-Similarity Law. There are no general solutions to Eq. (6)
that can be used to validate the entire numerical scheme proposed
in this paper. However, a strong confirmation of the numerical
validity of the total algorithm can be obtained by examining self-
similarity properties. Indeed, by ignoring the dissipation term in
Eq. (6) (e.g., setting Abs¼ 0) and by carefully choosing the initial
conditions, self-similar solutions can be found. The invariance of
the numerical solution according to these scaling laws can then be
used to establish the validity of the scheme. In acoustics, these
self-similarity laws were established for quadratic nonlinearities,
first for fold [50] and then for cusp caustics [39]. They are estab-
lished here for cubic nonlinearities.

The input signal in the boundary condition (Eq. (27)) is chosen
to be a step shock, which has an undefined characteristic time and
is inherently invariant with scaling

FðsÞ ¼ 0 s � 0

1 s > 0

�
(27)

Self-similarity is established by introducing the new scaled var-
iables (denoted with an overbar)

v ¼ c�1=4�v
x ¼ c1=2�x
y ¼ c3=4�y
s ¼ c�s
a ¼ c1=4�a

8>>>>><
>>>>>:

(28)

which subsequently make Eq. (15) and the boundary conditions in
Eq. (26) independent of the amplitude parameter c. Physically, the
first line in Eq. (28) shows that the focused velocity field has a
power 1/2 dependence on the amplitude of the input field. Note
that this is different from the compression wave case with quad-
ratic nonlinearities, for which this power is 2/3 [39]. As expected,
increasing the order of the nonlinearity leads to larger deviation
from the linear case (which has a power of 1).

Self-similarity is verified numerically by solving Eq. (6) for an
inviscid medium and its associated boundary conditions in
Eq. (26) for different values of the parameter c. The numerical
simulation is performed on a fixed domain defined by the dimen-
sionless variables ðx; y; sÞ for the different values of the parameter
c. The number of points in the grid is allowed to increase with c
according to Eq. (28). The mesh parameters are summarized in
Table 1.

The solutions are then rescaled according to the self-similar
variables in Eq. (28). This entire rescaling process is graphically
illustrated in Fig. 4 for three values of c. The images in the left
column are the direct simulation calculated on the fixed domain.
The images in the right column are rescaled by the self-similar
variables. This allows a direct comparison of the simulations for
different values of c. Note that c¼ 1 is used as the reference
domain. This self-similar domain is outlined by a rectangle on the
left column. Images in the right column should theoretically be
identical. Consistent with this prediction, the images show that the
numerical scheme satisfies the nonlinear self-similarity property.
For instance, the shape of the focused field, the location of the
maximum of velocity, and its amplitude are clearly similar for

Fig. 3 Top left: comparison between the analytical solution (solid line) and numerical solu-
tions with time step Ds 5 1023 (circles), Ds 5 531024 (crosses), and Ds 5 1024 (black squares)
for an N-wave at the theoretical caustic point O. Top right: zoom of first plot centered around
the first shock. Down: comparison between the analytical solution (solid line) and numerical
solutions for a time step of Ds 5 1024 for first-order (circles) and second-order (crosses)
schemes. Only the zoom centered on the first shock is shown. (a) Particle velocity at the caus-
tic point, (b) first shock of the solution at the caustic point, and (c) first shock of the solution
at the caustic point: comparison between the first- and second-order schemes.
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different values of c. Nevertheless, the second-order numerical
scheme introduces some numerical dispersion in the diffraction
operator, as described in Sec. 3.2. This leads to small oscillations
behind the caustic, which break the perfect self-similarity of the

numerical results (these oscillations are difficult to observe in the
images).

Figure 5 shows the position, time, and amplitude of the maxi-
mum of the velocity field, rescaled according to their respective
self-similar transformations (Eq. (28)), for a range of values of c
between 0.05 and 1. Note that the location of the maximum is
located on the y¼ 0 axis due to symmetry, but not at the geometri-
cal focus x¼ 0 due to diffraction and nonlinear effects.

In the ideal case, each variable would be independent of c and
would thus lay on a horizontal line. The positions and amplitude
of the focal point shown in Fig. 5 closely follow the self-similarity
law. There is, however, a slight deviation (around 10%) from this
law for the time variable (squares) for low values of c. Figure 6
illustrates the mechanism behind this discrepancy. It shows the
computed time waveforms rescaled in the self-similar variables, at
the point of maximum amplitude for c 2 ½0:05; 1�. Preceding the
shock front, there is a nonphysical low slope region that clearly

Table 1 Step size and number of points of each parameter
used for each parameter c

c (Dx, Nx) (Dy, Ny) (Dt, Nt)

0.05 (0.005, 3976) (0.0190, 3678) (0.0075, 8001)
0.1 (0.0071, 2811) (0.0320, 2187) (0.0150, 4001)
0.25 (0.0113, 1778) (0.0636, 1100) (0.0375, 1601)
0.35 (0.0133, 1503) (0.0819, 855) (0.0525, 1143)
0.5 (0.0159, 1258) (0.1070, 655) (0.0750, 801)
0.75 (0.0195, 1027) (0.1451, 483) (0.1125, 534)
1 (0.0225, 889) (0.1800, 389) (0.1500, 401)

Fig. 4 Velocity field for different values of c for the self-similar case of a focused step shock
with boundary condition given by Eq. (26). Left column: direct simulations calculated on a
fixed domain. The solid line is the geometrical cusp caustic. Right column: the same simula-
tions rescaled by the self-similar variables. The rectangles on the left column show the
rescaled region in the right column: (a) c 5 0.05, (b) c 5 0.5, (c) c 5 1, (d) c 5 0.05, (e) c 5 0.5, and
(f) c 5 1.
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deviates from the expected unperturbed value �v ¼ 0. This precur-
sor is due to numerical dispersion in the diffraction part of the
algorithm and the numerical dissipation introduced by the nonlin-
ear term—both tend to spread out the high-frequency content of
the signal. This may explain the small error in the self-similarity
of the time variable, which is more sensitive to dispersion errors.
Another possible source of error is that the boundary conditions
are imposed on a fixed domain while theoretically they are applied
at an infinite distance. Therefore, the condition of large distance
for the boundary conditions is better satisfied for numerical simu-
lations with small values of c. Nevertheless, the overall variability
is comparatively low. The algorithm thus respects the predicted
self-similarity scaling and is validated in the strongest possible in
the absence of an analytical solution.

4 Nonlinear Focused Shear Waves in Brain

4.1 Model Configuration. The validated simulation tool was
used to determine how focused shear shock waves can form in the
brain. The initial conditions for this simulation were obtained
from an X-ray computed tomography image of an anonymous
human skull. The simulation was performed in two dimensions in
a plane corresponding to a horizontal cut of the parietal bone (see
Fig. 7) at the level of the forehead. A globally concave portion of
the parietal bone was selected for investigation. To avoid pixela-
tion effects, the interior surface of the skull was interpolated with
a fifth-order polynomial spline method that was then used to
define the emitted wavefront. However, due to the retarded time
formulation of Eq. (4), the simulation can only support initial con-
ditions that are defined on a planar surface. Therefore, the source
used in the simulation was calculated with a time-shifting method
that projects the interior skull surface onto the source plane shown
in Fig. 7. Each point of the source plane emits a wave with a phase

shifted by DTðYÞ ¼ DXðYÞ=cT , where DXðYÞ is the distance
between the point of Y axis and the source plane shown in Fig. 7.
The geometry investigated here approaches a half-angle of 50 deg
and is therefore beyond the limit of validity of the parabolic
approximation, which is 18 deg. However, the point of this study
is to demonstrate that nonlinear effects can be dominant in
regimes that are consistent with traumatic brain injury. For the
purposes of this study, we are therefore willing to accept a para-
bolic approximation, which, in terms of diffraction, changes
slightly the location of the focus, to increase the accuracy of shock
wave modeling.

The linear elastic material properties of the brain have been
investigated by many authors, a recent synthesis being provided
by Chatelin et al. [51]. These studies indicate a large variability
depending on the measurement process (for instance, in vitro or
in vivo) and whether human or animal (porcine, bovine, calf,
monkey, etc.). Age dependence remains poorly understood. Shear
behavior of brain matter is clearly viscoelastic with relaxation
processes [52,53]. White matter has been shown anisotropic,
while gray matter turns out isotropic [54,55]. For instance, in their
FE linear modeling of brain response, Zhang et al. [28] used val-
ues found in Ref. [56] with the shear modulus varying between
6:4 kPa (long time) and 34 kPa (short time) for the gray matter
and between 7:8 kPa and 41 kPa for the white matter.

The nonlinear parameters ðA;D; and bÞ have been measured in
gelatin phantoms, with acoustoelastic methods to obtain the third-
order elastic constant A [12] and by determination of the level of
third harmonic to obtain the nonlinear parameter b [13]. In these
last two references, the medium was an agar/gelatin gel with 5%
gelatin concentration and 3% agar. Its shear modulus is in the
range of 6:35 6 0:04 kPa and 6:6 6 0:6 kPa, which is very similar
to the long time shear modulus measured by Shuck and Advani
[56] in the brain. The gel density is equal to 1.04, the same value
reported by Zhang et al. [28] for both white and gray matter. This
leads to a shear wave speed cT ¼ 2:52 6 0:12 m=s. The gelatin
phantom nonlinear parameter was measured to be b ¼ 4 6 0:5
[13]. The absorption coefficient at a frequency of f0 ¼ 100 Hz was
measured as aðf0Þ ¼ 17 Np=m. The absorption law as a function
of frequency was empirically determined to be simply propor-
tional to frequency [3]

a fð Þ ¼ a f0ð Þ
f

f0

(29)

Consequently, Gol’dberg number, which is a ratio of the nonli-
nearity and attenuation, is independent of frequency and depends
only on the amplitude.

Very recently, the nonlinear parameters have also been
measured in fresh porcine brain using acoustoelastographic meas-
urements of linear shear wave propagation in combination with
solutions of an inverse problem [57]. The reported values are

Fig. 5 Values of self-similar variables �x (circle), �y (triangle), �v
(disk), and 2�t (square) of the point of maximum amplitude for
different values of c. In the ideal case, each value would follow a
horizontal line.

Fig. 6 Velocity as a function of retarded time (self-similar variables) at the point of maximum
amplitude for c varying from 0.05 to 1: (a) full time signal and (b) zoom centered on the shock
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l ¼ 2:460:5 kPa; A ¼ �13:567:9 kPa, and D ¼ 5:961:6 kPa.
Unfortunately, the variability in these measurements is large in
terms of b which according to these results can vary between
�3.55 and 5.21. Note that negative values of b correspond to
shear softening and positive values to shear stiffening nonlinear-
ity. Only the latter phenomenon has been observed directly in gel-
atin [3]. There is currently no direct experimental observation of
shear shock waves in brain. We therefore choose to use the meas-
urements reported for gelatin because (a) they fall within the
range reported for brain and (b) they respect the observed shock
wave physics in soft solids. The values used in subsequent simula-
tions are thus l ¼ 6:6 kPa and b¼ 4.

4.2 Blunt Impact. In this section, a blunt head impact that is
focused in by the skull into the brain was simulated. A common
criterion in the literature to quantify head impact is the so-called
head injury criterion (HIC) [58] proposed by the U.S. National
Highway Traffic Safety Administration

HIC ¼ t2 � t1ð Þ
1

t2 � t1

ðt2

t1

adt

" #2:5

(30)

where t1 is the initial time of contact, t2 is the end time of contact,
and a is the head acceleration. Typical values for the impact dura-
tion t2 � t1 are less than 15 ms and HIC values go up to a few
thousands [30,59]. Such values correspond to trauma resulting
either from well-documented motorcyclist accidents [60] or from
football head injuries, in both cases with helmets, that lead to
severe diffuse axonal injuries. This corresponds to frequencies
larger than 66 Hz, velocities of the order of a few meters per sec-
ond and accelerations on the order of 10 g. Higher accelerations of
several hundreds of g are reported in cases of ballistic impact

[61]. Hence, for typical simulations, we chose as input waveform
a sinusoidal signal with a center frequency of f0 ¼ 100 Hz, a
single cycle envelope (see Fig. 8(a)), and an initial amplitude, V0,
chosen to be lower than 2 m=s. Note, however, that such values
have been observed for external head motion. The transfer func-
tion to the brain tissue shearing is a complex process [28] that
depends on the blunt impact orientation and location, the skull
mechanical properties, and the skull–brain interface that itself
is composed of three layers (dura, arachnoid, and pia maters).
Modeling such process is not in the scope of the present study and
for simplicity, we assumed a perfect transfer but with unknown
velocity amplitude. Hence, a parametric study was performed by
varying this velocity.

To ensure the convergence of the simulation, we used 400
points per wavelengths in time. The mesh on the x axis was
chosen according to the stability condition (Eq. (22)), so that the
simulations required Nx¼ 3155 points on the x axis with a step
size Dx ¼ 2:3777� 10�5 m. The y axis was discretized with
Ny¼ 690 points and a step size Dy ¼ 2:6276� 10�4 m. Only the
central 490 y-points are shown in the following results. The lateral
extent of the numerical domain is about 18 cm, which is larger
than the size of the selected part of the brain (about 12 cm). Com-
bined with the geometrical focusing effect, this prevented lateral
reflections from interfering with the focal zone.

Figure 9 shows the total energy, acceleration [61,62], and shear
stress [63] for initial condition amplitudes of 0:05 m=s; 0:6 m=s,
and 1 m=s. Figures 9(a)–9(c) show the total energy E of the signal
calculated as E ¼ q=2

P
kðVn

j;kÞ
2Dt at each point of the numerical

domain. The time plot at the focus is shown for each of these three
amplitudes in Fig. 8(b). Figures 9(d)–9(f) show maps of the maxi-
mum acceleration at each point of the spatial domain for the three
initial velocities. Since absorption is empirical (see Eq. (29)), only
the elastic part of the shear stress was calculated. It is defined as

Fig. 7 CT of a human head. Dark gray: bone. Light gray: soft tissues. Left: vertical central cut. The horizontal line indicates
the horizontal cut. Middle: horizontal cut. The arrow indicates the selected parietal area. Right: the selected parietal area.
The doted line indicates the input plane for numerical simulations.

Fig. 8 Left: Initial waveform. Right: velocities calculated at the focal spot for different initial
amplitudes. Solid line: 0:05 m=s. Dashed line: 0:6 m=s. Dotted line: 1 m=s.
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r31 ¼ l
@u3

@x1

þ lþ A

2
þ D

� �
@u3

@x1

� �3

(31)

The numerical value for r31 is calculated according to Eq. (31),
by changing the variables from ðt; x1Þ to ðs;XÞ. The numerical
output of the velocity field is differentiated by a first-order scheme
so that

rn
jk ¼ �

l
cT

Vn
j;k þ l

Xk

K¼0

Vn
j;K � Vn�1

j;K


 � Ds
DX
� 2b

3c3
T

Vn
j;k

� �3
(32)

Note that in agreement with Eq. (4), only the leading nonlinear
term involving partial derivative with respect to retarded time is
retained. The shear stress is shown in Figs. 9(g)–9(i).

All the images in Fig. 9 show a clear focal spot that is observ-
able at a depth of about x ¼ 0:04 m. For an initial velocity
V0 � 0:5 m=s, there is no shock at the focal point. Shock waves
appear for higher velocities, first in the negative phase of the shear
wave (see the case V0 ¼ 0:6 m=s), then in the positive phase. This
shock wave formation distance can be calculated analytically for a
plane sinusoidal wave. For the three considered velocities, this
distance is, respectively, 2:54 m; 0:018 m, and 0:0064 m. Attenua-
tion and diffraction slightly lengthen the plane wave estimates.
Nevertheless, the orders of magnitude are correct. Therefore,

compared to the 0:04 m geometrical focus, the three initial condi-
tions correspond to a shock formation distance well past the focus,
near the focus, and well before the focus. This leads to three dis-
tinct types of behavior.

In the first case, shown as the left column in Fig. 9, no shock
waves form and the propagation behavior is quasi-linear. There is
therefore some focal gain which is reduced by attenuation. Over-
all, there are no strong variations in the fields. In the second case,
in the middle column of Fig. 9, where the shock formation dis-
tance and focal distance are approximately the same, there is a
dramatic difference between the behavior at the focus and the rest
of the field. In particular, Fig. 9(e) shows that the maximum accel-
eration in the focal zone is much higher than anywhere else. The
acceleration at the initial condition surface is 60 m=s2, and it is
over 800 m=s2 in the focal region. This is due to the focal gain
and shock formation which act together in a small region and can
thus easily overcome attenuation to generate very high local
accelerations. In the third case, the right column of Fig. 9, the
shock forms in the first few millimeters of propagation, which cor-
responds to a small fraction of the wavelength. There is therefore
a shear shock wave propagating in whole region between the ini-
tial condition surface, on the left, and beyond the focal zone. This
behavior is particularly clear from the acceleration plot, see
Fig. 9(f).

Generally, the results indicate a very efficient increase in maxi-
mum acceleration as soon as shock waves appear. Indeed, shock

Fig. 9 Maximum of energy (top), acceleration (middle), and shear stress r31 (bottom) on the calculation domain for initial
amplitudes of 0:05 m=s ((a), (d), and (g)), 0:6 m=s ((b), (e), and (h)), and 1 m=s ((c), (f), and (i)). These values correspond to
shock formation distances that are, respectively, well past the focus, near the focus, and well before the focus.
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waves in inviscid media would lead to an infinite acceleration.
Here, acceleration remains finite due to the smoothing effects of
absorption. Nevertheless, very high local acceleration values can
be reached, up to a few thousand of g’s, at the shock front. These
high accelerations can be localized in a small region due to
focusing.

Focusing in terms of acceleration is much more efficient than in
terms of energy or shear stress. The latter two behave in a similar
fashion in the sense that there is a clear focusing effect but the
local variations in the focal zone are not much larger than in the
near field.

The transition from the quasi-linear regime to the shock regime
can be characterized more finely by considering additional values
in the initial condition velocity. Figure 10 shows the maximum
amplitudes of velocity, acceleration, and shear stress at the focal
point, for initial velocities between 0:05 m=s and 1 m=s. The left
plot of Fig. 10 shows that when the initial condition velocity
increases, the maximum velocity at the focus increases in a linear
fashion up to approximately 0:5 m=s. Beyond these values, shocks
are observed at the focus and the velocity increases in a sublinear
fashion. This is due to energy loss at the shock front. For accelera-
tion, shown in the middle plot of Fig. 10, the linear regime ends at
approximately 0:3 m=s. This is due to the fact that a shock is not
required to increase the acceleration, rather nonlinear steepening
increases the acceleration. For initial velocities of 0:5 m=s, when
shocks form, there is a dramatic increase in the maximum acceler-
ation observed at the focus. Beyond values of approximately
0:9 m=s, there is a saturation effect which corresponds to nonlin-
ear dissipation. The behavior of the shear stress, shown on the
right, is similar but with much less amplification compared to the
acceleration.

5 Conclusion

For soft tissues, the shear wave velocity is so low (on the order
of a few meters per second) that nonlinear effects are very intense
and shocks form over distances that are less than a wavelength
(on the order of a few centimeters). We have developed models
and simulation tools that can describe this relatively unexplored
behavior to investigate how the spherical skull geometry can influ-
ence shear shock formation in the brain.

The results were presented as function of velocities that are rel-
evant to TBI, i.e., brain velocities between 0:05 m=s and 2 m=s.
Within this parameter, range three distinct regimes were observed.
First, at low amplitudes the shear wave propagation is practically
linear. There are therefore some focusing effects due to the skull
geometry, but no large differences between the focal region and
the rest of the field for acceleration, energy, or shear stress. Sec-
ond, the regime where the focal zone and shock wave formation
distance are comparable exhibited dramatic differences between
the focal zone and the rest of the field. In particular, for the
0:6 m=s case, the acceleration at the source was 60 m=s2 and at
the focus it was 860 m=s2. This corresponds to an almost 15-fold

increase in the acceleration in a strongly localized area of the
brain. This suggests that focused shear shock waves could be a
mechanism that causes diffuse axonal injuries. Third, for large
velocities, the shock formation distance is a fraction of a wave-
length (a few millimeters). Therefore, shocks form near the source
and continue to propagate past the focus. Energy at these high dis-
plays a saturation effect because of the additional dissipation
through shocks. For the largest input velocity values, nonlinear-
ities are so strong that the wave is nonlinearly starting from the
skull surface.

This study demonstrates the importance of nonlinear effects
and the shock wave formation and focusing in the brain volume.
Because brain material parameters remain uncertain, the constitu-
tive parameters of gelatin were used; behavior of shear waves in
brain tissue might be qualitatively different. Since the simulations
were performed in 2D, the focal effect may be underestimated
compared to the 3D spherical skull geometry which has an even
larger focal gain. Nevertheless, the study demonstrates a new
potential mechanism for diffuse axonal injuries and tissue dam-
age. Further studies will consider removing the paraxial approxi-
mation, investigating other polarizations, and comparing the
simulations with laboratory experiments.
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